A Method for Profiling the Distribution of Eigenvalues Using the as Method
نویسندگان
چکیده
This paper is concerned with solving large-scale eigenvalue problems by algebraic sub-structuring and contour integral. We combine Algebraic Sub-structuring (AS) method and the Contour Integral Rayleigh-Ritz (CIRR) method. The AS method calculates approximate eigenpairs fast and has been shown to be efficient for vibration and acoustic analysis. However, the application areas of this method have been limited because its accuracy is usually lower than other methods. On the other hand, if the appropriate domains are chosen, the CIRR method produces accurate solutions. However, it is difficult to choose these domains without the information of eigenvalue distribution. We propose a combination of AS and CIRR such as the AS method is used as a method for profiling a distribution of eigenvalues, and the accurate solutions are produced by the CIRR method using the information of eigenvalue distribution provided by AS. We show our method is effective from the result of applying this method to the molecular orbital calculations.
منابع مشابه
Using the eigenvalues of the sound equation to determine the properties of materials
In this article, the eigenvalues of the sound equation are used to determine the refractive index. This refractive index helps to extract the acoustic components of the material such as the speed of sound in the material. This will help in identifying targets, especially in the field of signal processing. For this purpose, a method has been extracted that can be used to establish a relation bet...
متن کاملEigenvalue calculator for Islanded Inverter-Based Microgrids
The stability analysis of islanded inverter-based microgrids (IBMGs) is increasingly an important and challenging topic due to the nonlinearity of IBMGs. In this paper, a new linear model for such microgrids as well as an iterative method to correct the linear model is proposed. Using the linear model makes it easy to analyze the eigenvalues and stability of IBMGs due to the fact that it derive...
متن کاملEigenvalues-based LSB steganalysis
So far, various components of image characteristics have been used for steganalysis, including the histogram characteristic function, adjacent colors distribution, and sample pair analysis. However, some certain steganography methods have been proposed that can thwart some analysis approaches through managing the embedding patterns. In this regard, the present paper is intended to introduce a n...
متن کاملA mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملHomotopy perturbation method for eigenvalues of non-definite Sturm-Liouville problem
In this paper, we consider the application of the homotopy perturbation method (HPM) to compute the eigenvalues of the Sturm-Liouville problem (SLP) which is called non-definite SLP. Two important Examples show that HPM is reliable method for computing the eigenvalues of SLP.
متن کاملAsymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کامل